Reconstructing clean speech from noisy MFCC vectors

نویسندگان

  • Ben P. Milner
  • Jonathan Darch
  • Ibrahim Almajai
چکیده

The aim of this work is to reconstruct clean speech solely from a stream of noise-contaminated MFCC vectors, as may be encountered in distributed speech recognition systems. Speech reconstruction is performed using the ETSI Aurora back-end speech reconstruction standard which requires MFCC vectors, fundamental frequency and voicing information. In this work, fundamental frequency and voicing are obtained using maximum a posteriori prediction from input MFCC vectors, thereby allowing speech reconstruction solely from a stream of MFCC vectors. Two different methods to improve prediction accuracy in noisy conditions are then developed. Experimental results first establish that improved fundamental frequency and voicing prediction is obtained when noise compensation is applied. A series of human listening tests are then used to analyse the reconstructed speech quality, which determine the effectiveness of noise compensation in terms of mean opinion scores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of estimated and MAP-predicted formants and fundamental frequencies with a speech reconstruction application

This work compares the accuracy of fundamental frequency and formant frequency estimation methods and maximum a posteriori (MAP) prediction from MFCC vectors with hand-corrected references. Five fundamental frequency estimation methods are compared to fundamental frequency prediction from MFCC vectors in both clean and noisy speech. Similarly, three formant frequency estimation and prediction m...

متن کامل

Robust algorithms for speech reconstruction on mobile devices

This thesis is concerned with reconstructing an intelligible time-domain speech signal from speech recognition features, such as Mel-frequency cepstral coefficients (MFCCs), in a distributed speech recognition(DSR) environment. The initial reconstruction methods in this thesis require, in addition to MFCC vectors, fundamental frequency and voicing information. In the later parts of the thesis t...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Throat Microphone for Speaker Recognition Using AANN

In this paper, we have analyzed the performance of speaker recognition system based on features extracted from the speech recorded using throat microphone in clean and noisy environment. In general, clean speech performs better for speaker recognition system. Speaker recognition in noisy environment, using transducer held at the throat results in a signal that is clean even in noisy. This speak...

متن کامل

Auditory model based speech recognition in noisy environment

The main purpose of this paper is to present how to raise the speech recognition performance in noisy environment. So far the most popularly used speech feature in speech recognition is probably the so-called MFCC. The recognition rate of speech recognition algorithm using MFCC and CDHMM is known to be very high in clean speech environment, but it deteriorates greatly in noisy environment, espe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009